
John E. Dec
and

Magnus Sjöberg
Sandia National Laboratories

Sponsor: U.S. Dept. of Energy, OTT, OAAT and OHVT
Program Managers: Kathi Epping and Gurpreet Singh

HCCI Combustion: the Sources of Emissions at
Low Loads and the Effects of GDI Fuel Injection

8th Diesel Engine Emissions Reduction Workshop
August 25-29, 2002



Introduction

HCCI engines are a low-emissions alternative to diesel engines.

– Provide diesel-like or higher efficiencies.

– Very low engine-out NOX and PM emissions.

Research is required in many areas to resolve technical barriers to
the development of HCCI engines by industry.

– The objective of our work is to help provide this understanding.

Establish a laboratory to investigate HCCI combustion fundamentals.

– All-metal engine: fully operational – result are subject of presentation.

– Optically accessible engine: examine in-cylinder processes (end of 02).

CHEMKIN kinetic-rate computations

– Guide experiments

– Assist in data analysis

– Show limiting behavior



Engine and Operating Conditions

Six-cylinder diesel engine converted for
balanced, single-cyl., HCCI operation.

Versatile facility to investigate various
operational and control strategies.
– Compression ratios from 13 - 21 (18)*

– Swirl ratios from 0.9 - 3.2; 7.2 (0.9)*
– Speeds to 3600 rpm (600 - 1800 rpm)*

– Multiple fueling systems.
> Fully premixed (curr.)*
> Port fuel injection (PFI)
> Direct injection, gasoline-type (curr.)*
> Direct injection, diesel-type

– Liquid or gas-phase fuels (iso-octane)*

Complete intake charge conditioning.
– Intake temperatures to 180° C. (varies)*

– Intake pressures to 4 bars. (varies)*

– Simulated or real EGR. (none)*

HCCI All-Metal Engine

* Values in (red) are used for current work.
Based on Cummins B, 0.98 ltr./cyl.



Engine Appears to be Working Well
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CR = 18; φφφφ = 0.24; Pin = 120 kPa;
1200 rpm; Well-Mixed Charge

– Large squish clearance.
– Ring-land crevice 1% of TDC vol.
– Various compression ratios
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Computational Approach

Senkin application of the CHEMKIN-III kinetics rate code.

– Single-zone model with uniform properties and no heat transfer.

– Allows compression and expansion with slider-crank relationship.

– Full chemistry for iso-octane (Westbrook et al., LLNL).

Great oversimplification of a real engine. Model cannot reproduce
all real-engine behavior.

Model is well suited for investigating certain fundamental aspects of
HCCI combustion.

– Allows the effects of kinetics and thermodynamics to be isolated and
evaluated without complexities of walls, crevices, and inhomogeneities.
> Assists in analysis of experimental data by separating chemical-kinetic

and physical effects.

– Represents the adiabatic limit for bulk-gas behavior in real engines.

– Guide experiments by showing approximate trends in ignition timing &
temperature compensation with changes in operating conditions.
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Below φ = 0.2, emissions rise followed by a drop in combustion efficiency.
– Temperatures are too low to complete reactions, especially CO → CO2.

Indicates high emissions of OHC as well as CO and HC.
– OHC not well-detected by standard FID HC detector, and they can be harmful.

Results for bulk-gas alone, in the absence of heat transfer.
– Occurs in range of interest (typical diesel idle conditions are φ = 0.10 - 0.12).

– In real engine, heat transfer will shift onset of incomplete reactions to higher φ.

– Walls & crevices also add to emissions.

CHEMKIN predicts incomplete bulk-gas reactions at low loads.
Iso-Octane; 1800 rpm; CR = 21; Tin = 380 K; Pin = 1 atm.
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Vary φφφφ: Experiment and CHEMKIN

Iso-Octane ; CR = 18; 1200 rpm;
Pin = 120 kPa; Pre-Mixed

Intake temperature adjusted for
50% burn at TDC for φ = 0.14.

– Experiment: Tin = 140° C

– CHEMKIN: Tin = 117° C

Experiment shows greater
variation in combustion phasing.

– Heat transfer and residuals.

– Advanced timing at higher
loads has little effect on
emissions.

– Timing retard at low loads is
small and has little effect on
emissions.
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Emissions: Experiment and CHEMKIN

1200 rpm; CR = 18; Pin = 120 kPa;
Pre-Mixed Fueling

Experimental Tin was increased
to maintain near-TDC ignition.
– Compensate for heat transfer.

Experimental emissions match
model closely.

– CO levels match closely ~65%
> Bulk-gas source.

– HC, rise for φ < 0.2 is similar to
model indicates bulk-gas
source at low φ.
> Near-constant baseline

level for φ > 0.2 suggest
crevice source.

– “Missing carbon” in experiment
indicates presence of OHCs.
> Similar to model, but lower

due to FID response.
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Comparison of CO Emissions with φφφφ at Various Tin

Magnitude of increase in CO with decreasing φ agrees well with the
CHEMKIN results. Shows incomplete bulk-gas reactions are the cause.

– Onset of rise in CO levels is shifted to higher φ in engine due to heat transfer.

– Rise in CO shifts to progressively higher φ as Tin is reduced (lower Tcombustion.).

– Engine data also show a large drop in combustion efficiency at low loads,
corresponding to the increase in CO.
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Efficiencies and Combustion Stability

Combustion efficiency drops
from 95% to 60% as fuel is
reduced to low-idle, φ = 0.1.
– Similar drop in pressure-

indicated thermal efficiency.

– Commensurate with the
rapid rise in CO.

Std. Dev. of IMEP is 2 – 4
kPa for all fueling rates (φ).
– Increase at φ = 0.16 due this

being in the middle of the
rapid rise in CO.

Normalized σIMEP
increases below φ = 0.1
because IMEP is near zero.
– Std. Dev. of IMEPg ≤ 2.6%

from φ = 0.1 to φ = 0.26.
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Effect of Intake Pressure

1200 rpm; CR = 18; Pre-Mixed

Changing Pin from 101 to 120
kPa has little effect on onset of
incomplete bulk-gas reactions
when combustion phasing is
maintained.

– Experiment and CHEMKIN
both show slightly lower CO
values during rapid rise.

Tin adjusted for 50% burn at
TDC for φ = 0.14.

– 101 kPa: Tin = 157° C

– 120 kPa: Tin = 140° C
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Effect of Engine Speed on Bulk-Gas Reactions

Tin adjusted to maintain combustion phasing at TDC for φ = 0.14.
– Higher compression temperatures compensate for reduced time for reactions.

Engine speed has little effect on the fueling rate at which the onset of
incomplete bulk-gas reactions occurs – for iso-octane.
– In agreement with CHEMKIN computations.

Results suggest that special combustion strategies will be required for
low-load operation.



GDI Fueling: Vary Injection Timing

Early Injection
Provides a fairly uniform mixture.

– Can lead to incomplete bulk-gas
reactions at low loads, as
predicted by CHEMKIN.

Late Injection
Can provide partial charge
stratification.

– Mixture locally richer for the
same fueling rate.

– Offers the potential to mitigate
incomplete bulk-gas reactions at
light loads.

Also, could prevent fuel from
reaching ring-land crevice.

– Reduce baseline emissions.



Variation in Injection Timing: φφφφ = 0.1

Tin = 142° C; Pin = 120 kPa;
1200 rpm; GDI fueling

Early injection (0-90° aTDC
intake) provides a well-mixed
charge.

– High CO and low combustion
efficiency for φ = 0.1.

Retarding injection improves
combustion and emissions for
low-load operation.

– Injection at 290° reduces CO
and HC emission substantially
with only about 1g/kg-fuel NOX
(4 ppm).

– Combustion efficiency
increases from 59% to 82%.

Further improvements possible
with optimized stratification.
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Summary and Conclusions - 1

Metal HCCI research engine appears to be functioning well.

– At fully combusting conditions: ηthermal ~ 46%, σIMEP < 1%, CO < 65
g/kg (1000 ppm), HC < 35 g/kg (1200 ppm), NOX ~ 0.06 g/kg (1 ppm).

CHEMKIN results show that for fuel loads below φ ~ 0.16, bulk-gas
reactions are incomplete, even for an idealized adiabatic engine.

– Significant combustion inefficiencies, very high CO, and increased HC.
> Temperatures are too low to complete reactions, mainly CO → CO2.

– Indicate that significant OHC emissions should occur. (OHC is ~2x HC).

Experimental data show a very similar trend to the changes in
emissions and combustion efficiency as fuel loading is reduced.

– CO levels match very closely with those of the model (~65% of fuel C).
> Bulk-gas must be the source.

– Onset of incomplete bulk-gas reactions occurs at higher φ ~ 0.2 due to
heat transfer cooling the charge.



Summary and Conclusions - 2

The “missing carbon” in the emissions measurements matches the
expected OHC trends.
– HC detector (FID) has low sensitivity to OHC.

Combustion stability was good even at idle loads, σIMEP ≤ 2.6%.

Increasing Pin from 1.0 to 1.2 bars had little effect on the onset or
magnitude of incomplete bulk-gas reactions when ignition timing
was maintained.

Changing speed from 600 to 1800 rpm has almost no effect on the
onset or magnitude of incomplete bulk-gas reactions for iso-octane.

– Increased compression temperatures required to maintain ignition
timing compensate for reduced time to complete reactions.

Partial charge stratification by late-cycle fuel injection appears to
have a strong potential for mitigating the difficulties of low-load
operation.


